进入正文之前,先考虑一下像 ChatGPT 这样的 Transformer 语言模型(LM)的 prompt:
随着每天产生数百万用户和查询,ChatGPT 使用自注意力机制对 prompt 进行反复编码,其时间和内存复杂度随输入长度呈二次方增长。缓存 prompt 的 transformer 激活可以防止部分重新计算,但随着缓存 prompt 数量的增加,这种策略仍然会产生很大的内存和存储成本。在大规模情况下,即使 prompt 长度稍微减少一点,也可能会带来计算、内存和存储空间的节省,同时还可以让用户将更多内容放入 LM 有限的上下文窗口中。
那么。应该如何降低 prompt 的成本呢?典型的方法是微调或蒸馏模型,使其在没有 prompt 的情况下表现得与原始模型相似,或许还可以使用参数高效的自适应方法。然而,这种方法的一个基本缺点是每次需要为新的 prompt 重新训练模型(下图 1 中间所示)。
本文中,斯坦福大学的研究者提出了 gisting 模型(上图 1 底部),它将任意 prompt 压缩成一组更小的虚拟「Gist」 token,类似于前缀微调 。然而,前缀微调需要通过梯度下降为每个任务学习 prefix,而 Gisting 采用元学习方法,仅仅通过 prompt 预测 Gist prefix,而不需要为每个任务进行 prefix 学习。这样可以摊销每个任务 prefix 学习的成本,使得在没有额外训练的情况下泛化到未知的指令。
此外,由于「Gist」token 比完整 prompt 要短得多,因此 Gisting 允许 prompt 被压缩、缓存和重复使用,以提高计算效率。
研究者提出了一种非常简单的方法来学习指令遵循的 gist 模型:简单地进行指令微调,在 prompt 后插入 gish token,修改后的注意力掩膜阻止 gist token 后的 token 参考 gist token 前的 token。这使得模型同时学习 prompt 压缩和指令遵循,而无需额外的训练成本。
在 decodr-only(LLaMA-7B)和 encoder-decoder(FLAN-T5-XXL)LM 上,gisting 可实现高达 26 倍的即时压缩率,同时保持与原始模型相似的输出质量。这使得推理过程中 FLOPs 减少了 40%,延迟加速了 4.2%,与传统的 prompt 缓存方法相比,存储成本大大降低。
Gisting
通过掩膜学习 Gisting
上文描述了 Gisting 的一般框架,接下来将探讨一种学习此类模型的极简单方法:使用 LM 本身用作 Gist 预测器 G。这不仅利用了 LM 中的预存在知识,而且允许通过简单地执行标准指令微调来学习 gisting 并修改 Transformer 注意力掩膜来增强 prompt 压缩。这意味着 Gisting 不会产生额外训练成本,只需要基于标准指令微调即可!
下图 2 展示了所需要的更改。对于 GPT-3 或 LLaMA 等通常采用自回归因果注意力掩膜的 decoder-only LM,只需 mask out 图 2a 所示的三角形左下角。对于具有双向编码器和自回归解码器的 encoder-decoder LM,则需要进行两项修改(图 2b 所示)。
首先,在通常没有掩膜的编码器中,阻止输入 token x 参考 prompt token t。但还必须防止 prompt t 和 gist token g_i 参考输入 token x,否则编码器将根据输入学习不同的 gist 表示。最后解码器正常运行,除了在交叉注意力期间,这时需要阻止解码器参考 prompt token t。
实验结果
对于不同数量的 gist token, LLaMA-7B 和 FLAN-T5-XXL 的 ROUGE-L 和 ChatGPT 评估结果如下图 3 所示。
模型通常对 gist token 的数量 k 不敏感:将 prompt 压缩到单个 token 并不会导致显著性能下降。事实上,在某些情况下,过多的 gist token 会损害性能 (例如 LLaMA-7B, 10 gist tokens),这可能是因为增加的容量使训练分布过拟合。因此,研究者在下表 1 中给出了单 token 模型的具体数值,并在剩余实验中使用单个 gist 模型。
在见过的指令上,gist 模型获得了与其对应阳性对照模型几乎相同的 ROUGE 和 ChatGPT 性能,在 LLaMA-7B FLANT5-XXL 上的胜率分别为 48.6% 和 50.8%。这里研究者最感兴趣的是它们在未见过任务上的泛化能力,这需要通过另外两个数据集来衡量的。
在 Alpaca+ 训练数据集中未见过的 prompt 中,可以看到 gist 模型在未见过 prompt 上有着强大的泛化能力:与对照组相比,分别有 49.7%(LLaMA)和 46.2%(FLAN-T5)的胜率。在最具挑战性的 OOD Human split 上,gist 模型的胜率略微下降,分别为 45.8%(LLaMA)和 42.5%(FLANT5)。
本文的目的是让 gist 模型紧密地模仿原始模型的功能,因此有人可能会问究竟什么时候 gist 模型与对照组无差别。下图 4 说明了这种情况发生的频率:对于已见过任务(但是未见过的输入),gist 模型几乎有一半的时间与对照组不相上下。对于未见过的任务,这一数字下降到了 20-25%。对于 OOD Human 任务,这一数字又下降到 10%。无论如何,gist 模型输出的质量是很高的。
总的来说,这些结果表明,gist 模型可以可靠地压缩 prompt,甚至在训练分布之外的某些 prompt 上也可以做到这一点,特别是像 LLaMA 这样的 decoder-only 因果 LM。FLAN-T5 等 encoder-decoder 模型表现略差,一个可能的原因是 gist 掩膜抑制了编码器中的双向注意力流,这比仅 mask 自回归解码器的一部分 history 更具挑战性。未来需要进一步的工作来研究这个假设。
计算、内存和存储效率
最后,回到这项工作的核心动机之一:gisting 可以带来什么样的效率提升?
下表 2 展示了使用 PyTorch 2.0 分析器对模型进行单次前向传递的结果(即使用单个输入 token 的自回归解码的一步),并对 Human eval split 中的 252 个指令取平均值。与未经优化的模型相比,gist 缓存显著提高了效率。两种模型的 FLOPs 节约率达到了 40%,时钟时间降低了 4-7%。
然而更重要的是,与指令缓存相比,gist 缓存有着除延迟之外的关键优势:将 26 个 token 压缩为 1 个可以在输入上下文窗口中腾出更多空间,这受到绝对位置嵌入或者 GPU VRAM 的限制。特别是对于 LLaMA-7B,KV 缓存中的每个 token 需要 1.05MB 的存储空间。尽管在测试的 prompt 长度下,KV 缓存相对于 LLaMA-7B 推断所需的内存总贡献微不足道,但一个越来越常见的场景是开发人员在大量用户之间缓存许多 prompt,存储成本很快就会增加。在存储空间相同的情况下,gist 缓存能比完整指令缓存多 26 倍的 prompt。